Development of a High-Speed Current Injection and Voltage Measurement System for Electrical Impedance Tomography-Based Stretchable Sensors
نویسندگان
چکیده
Electrical impedance tomography (EIT) is an imaging method that can be applied over stretchable conductive-fabric materials to realize soft and wearable pressure sensors through current injections and voltage measurements at electrodes placed at the boundary of a conductive medium. In common EIT systems, the voltage data are serially measured by means of multiplexers, and are hence collected at slightly different times, which affects the real-time performance of the system. They also tend to have complicated hardware, which increases power consumption. In this paper, we present our design of a 16-electrode high-speed EIT system that simultaneously implements constant current injection and differential potential measurements. This leads to a faster, simpler-to-implement and less-noisy technique, when compared with traditional EIT approaches. Our system consists of a Howland current pump with two multiplexers for a constant DC current supply, and a data acquisition card. It guarantees a data collection rate of 78 frames/s. The results from our conductive stretchable fabric sensor show that the system successfully performs voltage data collection with a mean signal-to-noise ratio (SNR) of 55 dB, and a mean absolute deviation (MAD) of 0.5 mV. The power consumption can be brought down to 3 mW; therefore, it is suitable for battery-powered applications. Finally, pressure contacts over the sensor are properly reconstructed, thereby validating the efficiency of our EIT system for soft and stretchable sensor applications.
منابع مشابه
Hybrid Model for Bulk Current Injection Probe
A new hybrid-model for BCI probe is derived . This model is built based on the probe's internal structure without refinements, and by carrying out just one electrical measurement for the reflection coefficient, so that it can be generalized and used in studying the effect of layout parameters in the aim of improving the probe high frequency performance, which helps the developer in design stage...
متن کاملA Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors
Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to t...
متن کاملGrid Impedance Estimation Using Several Short-Term Low Power Signal Injections
In this paper, a signal processing method is proposed to estimate the low and high-frequency impedances of power systems using several short-term low power signal injections for a frequency range of 0-150 kHz. This frequency range is very important, and thusso it is considered in the analysis of power quality issues of smart grids. The impedance estimation is used in many power system applicati...
متن کاملA New High Frequency Grid Impedance Estimation Technique for the Frequency Range of 2 to150 kHz
Grid impedance estimation is used in many power system applications such as grid connected renewable energy systems and power quality analysis of smart grids. The grid impedance estimation techniques based on signal injection uses Ohm’s law for the estimation. In these methods, one or several signal(s) is (are) injected to Point of Common Coupling (PCC). Then the current through and voltage of ...
متن کاملAn Ultra High CMRR Low Voltage Low Power Fully Differential Current Operational Amplifier (COA)
this paper presents a novel fully differential (FD) ultra high common mode rejection ratio (CMRR) current operational amplifier (COA) with very low input impedance. Its FD structure that attenuates common mode signals over all stages grants ultra high CMRR and power supply rejection ratio (PSRR) that makes it suitable for mixed mode and accurate applications. Its performance is verified by HSPI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017